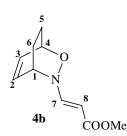
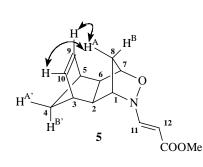

Supporting Information


General Remarks: NMR spectra were recorded on Bruker AM-300 instrument in CDCl₃ as a solvent. Chemical shifts were measured relative to internal reference ($\delta = 0$ ppm) SiMe₄ (1 H, 13 C). Methyl 3-nitropropionate 1 was obtained according to the known procedure (Belikov, V. M. *Bull. Acad. Sci. USSR. Div. Chem. Sci.*, 1956, 855 (Russ.); *Chem. Abstr.* 1957 *51*, 1837i.). Reagents: commercially available cyclopentadiene dimer (for preparation of cyclopentadiene 3a), cyclohexadiene 3b and *N*,*O*-bis(trimethylsilyl)acetamide (BSA) were freshly distilled before use. Reactions were carried out in a dry argon atmosphere. MeOH, CH₂Cl₂ and hexane were distilled *prior* to use.

Methyl (E)-3-(2-oxa-3-azabicyclo[2,2.1]hept-5-en-3-yl)-2-propenoate 4a, white crystals, m.p. 71—76°C (dec.).


NMR: δ (¹H): 1.79 (d, 1 H, C⁵ H_2 , H^A, ²J = 8.6 Hz); 2.02 (dt, 1 H, C⁵ H_2 , H^B, ²J = 8.6 Hz, ³J = 1.9 Hz); 3.67 (s, 3 H, OMe); 4.73 (br.s, 1 H, C¹H); 5.11 (d, 1 H, C⁷H, ³J = 13.0 Hz); 5.28 (br.s, 1 H, C⁴H); 6.23 (m, 1 H, C²H); 6.33 (m, 1 H, C³H); 7.45 (d, 1 H, C⁶H, ³J = 13.0 Hz). NOE: the irradiation of C¹H signal at δ 4.73 and C⁴H signal at δ 5.28 (NOE is presented in the figure). δ (¹³C): 47.8 (C⁵); 51.0 (MeO); 67.2 (C¹); 84.3 (C⁴); 96.4 (C⁷); 131.3 (C²), 132.1 (C³); 149.0 (C⁶); 168.6 (C=O). **4a**: C₉H₁₁NO₃ (181.19): calcd. (%) C 59.66, H 6.12, N 7.73; found (%) C, 59.94; H, 5.80; N, 7.81.

Methyl (E)-3-(2-oxa-3-azabicyclo[2.2.2]oct-5-en-3-yl)-2-propenoate 4b, white crystals, m.p. 70—76°C (dec.).

NMR: δ (1 H): 1.45 (m, 2 H, C 6 H₂); 2.19 (m, 2 H, C 5 H₂); 3.64 (s, 3 H, MeO); 4.13 (br.s, 1 H, C 1 H); 4.72 (br.s, 1 H, C 4 H); 5.06 (d, 1 H, C 8 H, 3 J = 14.0 Hz); 6.42 (m, 1 H, C 2 H); 6.52 (m, 1 H, C 3 H); 7.25 (d, 1 H, C 7 H, 3 J = 14.0 Hz). δ (13 C): 21.7 (C 5); 23.5 (C 6); 50.8 (MeO); 55.3 (C 1); 71.4 (C 4); 92.4 (C 8); 130.3 (C 2), 130.8 (C 3); 148.8 (C 7); 168.6 (C=O). **4b**: C₁₀H₁₃NO₃ (195.21): calcd. (%) C 61.53, H 6.71, N 7.17; found (%) C, 60.94; H, 6.04; N, 7.25.

Methyl (E)-3-(4-oxa-5-azatetracyclo[6.2.1.1^{3,6}.0^{2,7}]dodec-9-en-5-yl)-2-propenoate 5, white crystals, m.p. 125—

135°C (dec.). NMR: δ (¹H): 1.28 (d, 1 H, C⁴ H_2 , H^{B'}, ²J = 9.8 Hz); 1.46 (d, 1 H, C⁴H, H^{A'}, ²J = 9.9 Hz); 1.49 (d, 1 H, C⁸ H_2 , H^B, ²J = 11.6 Hz); 2.48 (d, 1 H, C⁸ H_2 , H^A, ²J = 11.4 Hz); 2.50 (m, 1 H, C²H); 2.61 (m, 1 H, C⁶H); 2.95 (m, 2 H, C³H + C⁵H); 3.67 (s, 3 H, MeO); 3.88 (br.s, 1 H, C¹H); 4.43 (br.s, 1 H, C⁷H); 5.14 (d, 1 H, C¹²H, ³J = 12.9 Hz); 5.98 (m, 2 H, C⁹H + C¹⁰H); 7.39 (d, 1 H, C¹¹H, ²J = 12.9 Hz). NOE: the irradiation of C⁹H + C¹⁰H signals at δ 5.98 (NOE is presented in the figure). δ (¹³C): 34.2 (C⁸); 44.6, 45.0 (C³ and C⁵); 46.4 (C²); 47.9 (C⁶); 50.7 (MeO); 53.9 (C⁴); 63.7 (C¹); 80.6 (C⁷); 92.7

 (C^{12}) ; 134.8, 135.1 $(C^{9} \text{ and } C^{10})$; 147.5 (C^{11}) ; 168.9 (C=O). **5**: $C_{14}H_{17}NO_{3}$ (247.29): calcd. (%) C 68.00, H 6.93, N 5.66; found (%) C, 67.53; H, 6.78; N, 5.68.

Methyl 6-ethoxy-5,6-dihydro-4H-1,2-oxazine-4-carboxylate 6, yellowish oil. The ¹H NMR for **6** was in good agreement with literature data (Ioffe, S. L.; Lyapkalo, I. M.; Tishkov, A. A.; Danilenko, V. M.; Strelenko, Yu. A.; Tartakovsky, V. A. *Tetrahedron*, **1997**, *53*, 13085). The same isomeric ratio 2 : 1 as in previously reported work was observed.